
CMSC 426 Final Project: Visual Odometry 1

Due: 16th May 2023 1:30 PM Total points: 100

Visual odometry is an important concept in robotic perception where it is used to estimate
the trajectory of a robot (or more precisely the trajectory of a robot’s camera). Visual
odometry is conceptually similar to structure from motion, but instead reconstructs motion
from motion.
In this project you are given frames of a driving sequence taken by a camera in a car and a
script to extract the camera’s intrinsic parameters. Using this sequence of frames, you will
perform a series of steps (identify shared keypoints, estimate the fundamental and essential
matrices between frames, decompose the essential matrices into translation and rotation
parameters, plot the camera center) to reconstruct and visualize the 3D trajectory of the
camera.
The driving sequence dataset can be found in this folder. Note: It is almost 500MB and you
will need to use your UMD login for access.

1 Extra Credit for Early Submissions

You will receive 1 point of extra credit for every full 24 hour period before the deadline you
submit your assignment, up to 10 points.
Note: The extra credit points on the final project will only count towards the final project
grade and not the overall grade. In other words, if you miss any points on the project itself,
the extra credit will help you make that up.

2 Restricted Functions and Installation

So long as you follow each of the steps in the instructions (i.e., don’t call a function that
performs the entire pipeline for you) you may use cv2 functions to complete the main part
of the assignment. In part6 you will receive extra credit for implementing some of these
functions yourself. Use only numpy in the extra credit sections.
Matplotlib, os, and/or glob can be used for loading data, plotting, etc.

3 Estimate Rotations and Translations Between Frames

55 points total
Estimate the 3D motion (translation and rotation) between successive frames in the sequence
by performing the following steps. You will perform these steps 376 times, starting from the
first image and ending at the second to last image. Be sure to store the rotations and
translations for use later.
This could take tens of minutes to run, so be sure to give yourself adequate time!

https://umd.box.com/s/khfdc3kkeplu1g5to2297jtvcde6kqhz


CMSC 426 Final Project: Visual Odometry 2

3.1 Compute Intrinsic Matrix

5 points
Extract the camera parameters using ReadCameraModel.py as follows:
fx, fy, cx, cy, , LUT = ReadCameraModel(‘./Oxford dataset reduced/model’).
Using fx,fy,cx, and cy defined above, compute the camera’s intrinsic matrix K.

3.2 Load and Demosaic Images

5 points total
The input images are in Bayer format from which you can recover the color images using
the demosaic function with GBRG alignment. That is, load in the Bayer pattern encoded
image img and convert it into a color image using:
img = cv2.imread(filename,flags=-1)

and
color image = cv2.cvtColor(img, cv2.COLOR BayerGR2BGR)

Optionally undistort the current frame and next frame using UndistortImage.py as follows:
undistorted image = UndistortImage(color image,LUT)

3.3 Keypoint Correspondences

15 points
Find point correspondences between successive frames using a keypoint algorithm of your
choice. You are welcome to use code from online, just be sure to cite your source.
Hint: Don’t keep bad matches.

3.4 Estimate Fundamental Matrix

10 points
Using the matched keypoints you just identified, estimate the fundamental matrix between
the two frames.
Hint: See cv2.findFundamentalMat.

3.5 Recover Essential Matrix

10 points
Estimate the Essential Matrix E from the Fundamental Matrix F by accounting for the
calibration parameters.

3.6 Reconstruct Rotation and Translation Parameters from E

10 points total



CMSC 426 Final Project: Visual Odometry 3

Decompose E into a physically realizable translation T and rotation R. That is, among the
four possible decompositions, chose the one that satisfies the depth positivity constraint.
Hint: See cv2.recoverPose.

Figure 1: My reconstruction of the trajectory (projected onto 2 dimensions).

4 Reconstruct the Trajectory

20 points
In the previous section, you should have computed 376 distinct rotations Ri and translations
ti. Starting from i = 0, these matrices and vectors tell you how to translate and rotate a
point in camera i’s coordinate system to map it into camera i+ 1’s coordinate system.
Assuming that the first video frame started at the origin, compute and plot the positions
of the camera centers (for each frame) based on the rotation and translation parameters
between successive frames. My reconstruction, projected onto 2 dimensions, is illustrated in
Figure 1. Include a 3-D reconstruction of the trajectory as well.
Hint: If the 4 × 4 matrix T12 takes a point in camera 1’s coordinate system and puts it in
camera 2’s coordinate system then T−1

1,2 takes a point in camera 2’s coordinate system and
places it in camera 1’s coordinate system. Similarly, if the matrix product T23T12 takes a
point in camera 1’s coordinate system and maps it to camera 3’s coordinate system, then
(T23T12)

−1 = T−1
12 T−1

23 takes a point in camera 3’s coordinate system and maps it to camera
1’s coordinate system.



CMSC 426 Final Project: Visual Odometry 4

5 Technical Report and Discussion

25 points
Clearly and cogently document your methods and results. From your PDF report, it should
be clear what you did, how/why you did it, and how well it worked, without needing to run
code or sift through 300 figures. If you used a cv2 function, explain how that function works.

6 Reconstruct Rotation and Translation Parameters

Yourself

20 points extra credit
Write a function to replace the cv2.recoverPose function in the pipeline.
Your function should first decompose the essential matrix into 4 distinct combinations of
rotations and translations; each of these combinations represents a potential camera matrix
from frame i+1. It should then triangulate all the points in the scene 4 times, once per camera
matrix (assuming frame i’s camera used the world coordinate system). You should return
the translation/rotation pair associated with the camera matrix for which most matched
points are in front of both cameras.

7 Useful Resources

• A detailed description of a subset of the individual steps can be found at this page.

• A video lecture on the Estimation of the Fundamental and the Essential Matrix.

https://cmsc733.github.io/2022/proj/p3/
https://www.youtube.com/watch?v=K-j704F6F7Q


CMSC 426 Final Project: Visual Odometry 5

Submission Instructions

Your canvas submission should consist of a zip file namedYourDirectoryID FinalProject.zip,
for example xyz123 FinalProject.zip. The file must contain the following:

• FinalProject.py, not .ipynb

• report.pdf

Use relative pathing assuming that FinalProject.py and the Oxford dataset reduced

directory have the same parent directory.

Collaboration Policy

You are encouraged to discuss ideas with your peers. However, the code should be your own
and should represent your understanding of the assignment. Code should not be shared
or copied. If you reference anyone else’s code in writing your project, you must properly
cite it in your code (in comments) and in your report.

Please list any individuals you collaborated with at the end of your report.

Plagiarism

Plagiarism of any form will not be tolerated. You are expected to credit all sources explicitly.
If you have any doubts regarding what is and is not plagiarism, talk to me.

Credit

Thanks to Ashok Veeraraghavan, Ioannis Gkioulekas, Mahammed Charifa, Cornelia Fer-
muller, and Kanishka Ganguli for sharing their course resources.
The dataset used is by courtesy of Oxford’s Robotics Institute.


	Extra Credit for Early Submissions
	Restricted Functions and Installation
	Estimate Rotations and Translations Between Frames
	Compute Intrinsic Matrix
	Load and Demosaic Images
	Keypoint Correspondences 
	Estimate Fundamental Matrix
	Recover Essential Matrix
	Reconstruct Rotation and Translation Parameters from E

	Reconstruct the Trajectory
	Technical Report and Discussion
	Reconstruct Rotation and Translation Parameters Yourself
	Useful Resources

