
AN ANALYSIS OF PATH PLANNING ALGORITHMS

University of Maryland, College Park

CMSC351H Final Project

Bo He

December 11, 2022

Contents

1 Introduction to Artificial Intelligence 3
1.1 Machine Learning . 3
1.2 Robotics . 4
1.3 Evolutionary Computation . 4
1.4 Natural Language Processing . 5
1.5 Computer Vision . 6

2 Autonomous Driving 7
2.1 The 6 Levels of Vehicle Autonomy . 7
2.2 Three Primary Sensors . 8
2.3 Path Planning . 9

3 Path Planning Algorithms 10
3.1 A* Search Algorithm . 10

3.1.1 Explanation . 10
3.1.2 Example . 10
3.1.3 Pseudo Code[14] . 11

3.2 Dijkstra’s Algorithm . 12
3.2.1 Explanation . 12
3.2.2 Example . 12
3.2.3 General Implementation by C++[15] . 13

3.3 RRT Algorithm . 14
3.3.1 Explanation . 14
3.3.2 Example . 14
3.3.3 Pseudo Code[16] . 14

4 Algorithms Analysis 15
4.1 Strengths for Each Algorithm . 15
4.2 Limitations for Each Algorithm . 16
4.3 Potential Future Research Directions . 17

5 Summary 18

1

Abstract

This paper is a basic analysis of path planning algorithms. This is the final project for class
CMSC351H taken at the University of Maryland, College Park at Fall 2022.

This paper first gives a brief analysis of Artificial Intelligence and its subsequent development
by an undergraduate student, introducing what AI is, autonomous driving, and the connection
between them. Then, it will present a study of different path planning algorithms and their
applications in various fields. The author provide an overview of the different types of path
planning algorithms, including A∗ search, Dijkstra’s algorithm, and the RRT algorithm. The
paper concludes with a discussion of the strengths and limitations of each algorithm, as well as
potential future research directions. The paper is for class use and self-study only.

2

1 Introduction to Artificial Intelligence

“The development of full artificial intelligence could spell the end of the human race. . . .It
would take off on its own, and re-design itself at an ever increasing rate. Humans, who
are limited by slow biological evolution, couldn’t compete, and would be superseded.”

— Stephen Hawking told the BBC

The development of technology has really brought qualitative changes in the quality of life for
human beings. Some of the most notable changes include increased connectivity and communi-
cation, enhanced transportation and infrastructure, and the development of new and improved
medical treatments and technologies. Talking more to the technology of electronics, It is possible
and easy for people to access a vast amount of information and has greatly facilitated the ability
to share ideas and knowledge through the internet. It has also made many everyday tasks easier
and more convenient. Besides, with the popularity of computers and the explosion of technology,
artificial intelligence(AI) is often talked about. Artificial intelligence refers to the simulation of
human intelligence in machines that are programmed to think and act like humans. These ma-
chines are designed to learn from their experiences, adjust to new inputs and perform human-like
tasks. The changes brought by the development of AI to society are more easily detected, including
increased automation and efficiency in various industries, the ability to analyze and process large
amounts of data quickly and accurately, and the development of new and improved technologies
and products.[1] AI has also led to the creation of new job opportunities in fields such as machine
learning and data science. Additionally, it has the potential to improve healthcare, transportation,
and other areas of our lives. However, it has also raised concerns about job displacement and the
ethical implications of developing and using AI. As Stephen Hawking put it, ”The development
of full artificial intelligence could spell the end of the human race.”. There are fears that the de-
velopment of AI will bring with it a sense of autonomy, with incalculable consequences. However,
based on my understanding, for the time being, AI is far more helpful to human society than it is
potentially harmful. Overall, the development of AI has brought both opportunities and challenges.

AI has its roots in several older disciplines: Philosophy, Logic, Computation, Cognitive Science/Psy-
chology, Biology/Neuroscience, and Evolution. By looking at each of these in turn, we can gain
a better understanding of their role in AI, and how these underlying disciplines have developed
to play that role. Major sub-fields of AI now include: Machine Learning, Neural Networks, Evo-
lutionary Computation, Vision, Robotics, Expert Systems, Speech Processing, Natural Language
Processing, and Planning. The paper will give a detailed description for some areas in the following
sections.

1.1 Machine Learning

Machine learning is a subset of artificial intelligence that involves the use of algorithms and statisti-
cal models to enable a system to improve its performance on a specific task through experience. It
has become an increasingly important area of research and development, with applications ranging
from image and speech recognition to natural language processing and predictive analytics. The
field of machine learning has seen significant growth in recent years, with a wide range of algorithms
and techniques being developed to tackle a variety of tasks. Some of the most commonly used algo-
rithms include decision trees, support vector machines, and neural networks. These algorithms have
been applied to a wide range of domains, including computer vision, natural language processing,
and predictive modeling. One of the key challenges in the field of machine learning is the need

3

for large amounts of high-quality training data. This can be difficult to obtain, particularly for
specialized or niche applications. Additionally, there are concerns about the ethical implications of
using machine learning, particularly in areas such as decision-making and automated systems.[3]

Despite these challenges, the potential benefits of machine learning are considerable. It has the
potential to improve the accuracy and efficiency of many tasks, and to enable the development of
new applications and technologies. In the coming years, it is likely that machine learning will con-
tinue to play a key role in the development of artificial intelligence and other advanced technologies.
Overall, the field of machine learning is an exciting and rapidly-evolving area of research. It has
the potential to impact a wide range of domains, and its developments will be closely watched by
researchers and practitioners alike.

1.2 Robotics

AI Robotics is an emerging field of research which aims to develop artificial intelligence (AI) tech-
niques and algorithms that can be used in robotics systems. AI Robotics focuses on the design,
development, and use of intelligent robots that can perform useful tasks without direct human
supervision. The main goal for AI Robotics researchers is to create a system that has the same
or similar capabilities as humans with respect to perception, reasoning, learning ability and inter-
action with their environment. The main purpose of developing such systems is not only to make
these robots more efficient but also help people understand how they work so they can improve
their own performance. For example: by creating a robot capable of making decisions based on its
understanding of the world it will help us better understand our own cognitive abilities.[4]

What are some examples from everyday life? There are many real-world applications where AI
robotics technologies have already been implemented successfully including prosthetic limbs for
amputees; automated checkout counters in retail stores; robotic arms for surgery; robotic aircrafts
like drones; autonomous vehicles like cars or trucks etc.; service robots for elderly care facilities etc.;
home automation devices like smart speakers at home; self-driving cars etc.; also there are many
other exciting areas where new developments are happening rapidly such as: virtual assistants like
Siri or Alexa from Apple or Google Assistant from Alphabet Inc.. These technologies may soon
become part of our daily lives!

1.3 Evolutionary Computation

Evolutionary Computation (EC) is a method for solving optimization problems. It has been used in
many areas, such as robotics and bioinformatics. The basic idea of EC is to simulate the evolution
of populations of agents: these are simple programs that can be run on computers or simulated by
an algorithm. In order to evolve them, we need some starting conditions for each agent and the
rules for their interaction with other agents. [5] In practice, this means that we need to specify the
fitness function (the measure of how well an agent performs its task), so that it evolves towards
being better at performing its tasks than any other agent in the population. We also need rules
describing how two different agents interact: when one learns from another, which gives it more
knowledge about what it needs to do next time; when two agents fight against each other; etc.
Evolutionary computation is not limited to simulating biological systems, but can be applied to
a wide range of problems from designing artificial life-forms (e.g., robots) or even creating virtual
worlds with intelligent agents living within them ! In fact, it has been argued that evolutionary
computation is fundamentally different from classical mathematical methods because this new ap-

4

proach does not longer rely on the notion of a “first principle” to guide its search for solutions, but
rather it uses an iterative process that is guided by the data gathered and tested during previous
runs.[5]

So far so good! But there are several key concepts behind EC which make things more com-
plex than they might seem at first glance: First, because our goal is to evolve systems rather
than just optimize functions or solve equations exactly, we have no way of knowing beforehand
whether our solution will be useful in real life – i.e., whether it will be able to perform effectively
any given task under actual conditions – let alone all possible ones![6] Second, unlike most classic
computational models based on specific types of physical processes in nature (such as Newton’s
laws or Maxwell’s equations), EC does not assume anything about the underlying physics – i.e.,
no matter what kinds of particles/agents/etc., we use as building blocks for our simulation model,
they will always obey certain fixed laws governing their interactions with each other and with their
environment. This means that although classical mathematical techniques have been developed
over centuries based on assumptions about physical reality, they do not apply directly here since
there are no known natural laws underlying biological phenomena! Instead, scientists must usually
develop new theories appropriate specifically for biological systems. [6]

1.4 Natural Language Processing

Natural language processing (NLP) is a field of artificial intelligence that focuses on enabling com-
puters to understand, interpret, and generate human language. This technology has a wide range
of applications, including language translation, chatbots, and text analysis. At a high level, NLP
involves three main tasks: understanding the structure of a language, determining the meaning of
words and sentences, and generating natural-sounding language. To accomplish these tasks, NLP
systems use a combination of rule-based and statistical methods. Rule-based NLP systems rely
on a set of predefined rules and algorithms to analyze language. These systems can be effective
for tasks like grammar checking and spelling correction, but they can be limited in their ability to
understand the meaning of language and handle complex or ambiguous sentences. Statistical NLP
systems, on the other hand, use machine learning algorithms to analyze large amounts of language
data and make predictions about the meaning of words and sentences. These systems can be more
flexible and adaptable than rule-based systems, but they require large amounts of training data to
perform well.[8]

NLP has seen significant progress in recent years. One of the key drivers of this progress has
been the increasing availability of large amounts of data, which has allowed NLP algorithms to
be trained on more diverse and nuanced language examples. Another important factor has been
the development of more advanced machine learning techniques, such as deep learning, which has
improved the performance of NLP systems on a wide range of tasks. This has led to NLP systems
that are more accurate, versatile, and able to handle complex or ambiguous language inputs. How-
ever, as for now, the challenge for this technology is the need for NLP systems to be able to handle
a wide range of languages and dialects. While some NLP systems are designed to work with a
specific language, there is a growing demand for systems that can handle multiple languages, which
requires more sophisticated algorithms and more data for training.

Overall, the field of NLP has made great strides in recent years, but there is still much work
to be done to fully understand and replicate the complexity of human language.

5

1.5 Computer Vision

Computer vision is a field of artificial intelligence that focuses on enabling computers to interpret
and understand visual data from the world around them. This technology is used in a wide range
of applications, including image and video recognition, object detection, and autonomous naviga-
tion. Talking about the operation mode, computer vision systems use a combination of sensors,
algorithms, and machine learning to analyze visual data. The input to a computer vision system is
typically one or more images or video streams, which are processed to extract relevant information
and make predictions about the objects or scenes depicted in the images. There are many different
approaches to computer vision, but most systems can be broadly classified into two categories:
rule-based and machine learning-based. Rule-based systems use a set of predefined rules and al-
gorithms to interpret visual data, while machine learning-based systems use training data to build
predictive models that can recognize patterns in the data.[9]

Computer vision is a rapidly advancing field of artificial intelligence that has seen significant progress
in recent years. This progress has been driven by several factors, including the availability of large
amounts of data, the development of more powerful hardware, and the advancement of machine
learning algorithms. One of the key challenges in computer vision is the need to handle a wide
range of lighting conditions, angles, and other factors that can affect the appearance of objects in
images. Another challenge is the need to process large amounts of data in real-time, which requires
efficient algorithms and powerful hardware. To address these challenges, we need use a combination
of different algorithms and techniques to allow a quicker response. Another way is developing more
powerful hardware to allow system make decisions quickly and accurately.

Overall, the field of computer vision has made great strides in recent years, but there are still
many challenges to be addressed. These challenges include improving the accuracy and robustness
of computer vision systems, as well as developing more efficient algorithms and hardware.

6

2 Autonomous Driving

Autonomous driving, also known as self-driving or driverless, refers to the ability of a vehicle to
operate without a human driver. Autonomous vehicles use a variety of sensors and advanced tech-
nologies, such as artificial intelligence, to navigate and make decisions on the road. These vehicles
are designed to be safer, more efficient, and more convenient than traditional vehicles. Path plan-
ning, as one of the main functions of autonomous driving, plays a very important role, or we can
say that it is the cornerstone of autonomous driving and are essential for the development of self-
driving vehicles. Autonomous driving to enable a vehicle to navigate and drive itself without the
need for human input. This is typically done using a combination of sensors, maps, and algorithms
that help the vehicle make decisions about how to navigate its environment. Path planning, on
the other hand, is the process of determining the best route for the vehicle to follow to reach its
destination.[10]

One of the key challenges in autonomous driving and path planning is the need to make deci-
sions in real-time based on a constantly changing environment. This requires the use of advanced
algorithms and sensors that can quickly and accurately perceive the vehicle’s surroundings and
determine the best course of action. Another challenge is the need to account for a wide range
of factors that can affect the safety and efficiency of the vehicle’s journey, such as the location of
obstacles, traffic laws, and the vehicle’s capabilities. This requires the use of sophisticated planning
algorithms that can take into account these factors and generate a safe and efficient route.

Overall, the development of autonomous driving and path planning technology has the potential to
greatly improve road safety and efficiency, as well as provide new mobility options for individuals
who are unable to drive. However, there are still many challenges to be addressed, such as ensuring
the reliability and robustness of these systems in a wide range of environments and conditions.

2.1 The 6 Levels of Vehicle Autonomy

The 6 levels of vehicle autonomy, as defined by the Society of Automotive Engineers (SAE)[7], are
as follows:

• Level 0: No Automation - The driver is in complete control of the vehicle and all of its
functions at all times.

• Level 1: Driver Assistance - The vehicle has one or more automated functions, such as
electronic stability control or adaptive cruise control, but the driver must remain engaged
and in control of the vehicle at all times.

• Level 2: Partial Automation - The vehicle has multiple automated functions, such as lane
keeping assist and automatic emergency braking, but the driver must still monitor the driving
environment and be prepared to take control of the vehicle if necessary.

• Level 3: Conditional Automation - The vehicle can operate autonomously in certain driving
situations, such as on a highway, but the driver must be ready to take control of the vehicle
if the system encounters a situation it cannot handle.

• Level 4: High Automation - The vehicle can operate autonomously in most driving situations,
but the driver must still be able to take control of the vehicle if necessary.

7

• Level 5: Full Automation - The vehicle can operate autonomously in all driving situations
and does not require a human driver to be present.

Each level of vehicle autonomy represents an increase in the capabilities of the vehicle’s automated
systems, with Level 0 being the least autonomous and Level 5 being fully autonomous. The levels
are not meant to be a strict classification, and there may be overlap between adjacent levels.

2.2 Three Primary Sensors

In most autonomous vehicles, the combination of cameras, LiDAR, and RADAR form the primary
set of sensors that provide imaging, detection, ranging, tracking, and sensing of the drive location
for a seamless ride.[12]Autonomous vehicles ensure that no human intervention is required when
driving with the use of sensors. Autonomous vehicles use a variety of sensors to develop trustworthy
vision. The sensors enable the self-driving vehicle to operate without causing fatalities by allowing
it to recognize obstacles or obstructions in the road environment.

In autonomous vehicles, various sensors work together to provide a precise detection system. The
core set of sensors in the majority of autonomous cars combines cameras, LiDAR (light detection
and ranging), and RADAR (radio detection and ranging) to give the functionality of imaging, de-
tection, ranging, tracking, and sensing of the drive location for a smooth ride. These overlapping
sensor functions aid in the detection of the three-dimensional shape, proximity, and speed of adja-
cent objects.

Let’s discuss the three primary sensors that help autonomous vehicles function.

• Camera Vision

The car can record photographs and videos of its surroundings using camera sensors. This
can be used to find things, road signs, and other environmental elements. The best sensor
for providing a precise visual picture of an autonomous vehicle’s surroundings is a camera.
To provide a 360° vision, cameras are installed on the front, back, right, and left sides of au-
tonomous cars. These cameras sense both short-range wide vision and long-range arrow view
using wide and narrow fields of view. In autonomous vehicles, super-wide lenses are employed
to capture a panoramic image that helps in parking.[12] However, precise camera images are
unable to provide information about the separation between objects and autonomous cars.
Object distance from the vehicle can be calculated using LiDAR technology. Notably, Tesla
is the only business on the market that makes use of a pure vision autopilot system.

• LiDAR

These sensors use lasers to measure the distance to objects around the vehicle, creating a
3D map of the vehicle’s environment. This allows the vehicle to accurately detect the loca-
tion and movement of nearby objects. LiDAR measures the separation between two objects
using laser beams (light waves). LiDAR is positioned on top of vehicles in autonomous ve-
hicles and rotates quickly while shooting out laser beams. The laser beams return to the
apparatus after being reflected by the obstructions. The autonomous vehicle’s surroundings
are measured in terms of distance, shape, and depth using the time it takes for this to occur.
LiDAR can detect an obstacle’s position, form, size, and depth, but it can also produce false
echoes that misidentify nearby objects as far away ones and vice versa. LiDAR can’t tell

8

between numerous laser signals at once and depicts barriers that don’t exist for autonomous
vehicles. Rain, snow, and fog all impair LiDAR performance. As a result, the best and most
accurate sensor for autonomous vehicles is RADAR technology.[12]

• RADAR

These sensors use radio waves to detect objects around the vehicle. This can be used to
measure the distance, speed, and direction of objects, allowing the vehicle to accurately track
their movements. LiDAR and RADAR operate on the same principles, although RADAR
uses radio waves as opposed to LIDAR’s use of light waves. The distance, angle, and velocity
of an object in front of the autonomous vehicle are determined using the time it takes for
radio signals to return from it to the device. Millimeter waves are used in autonomous car
RADAR, which offers millimeter-level accuracy. Autonomous vehicle RADAR uses millime-
ter waves to provide centimeter-accurate location and movement determination in addition
to high resolution obstacle recognition. In contrast to other sensor technologies, RADAR
consistently operates in low visibility conditions, such as overcast weather, snow, rain, and
fog, in autonomous cars.[12]

2.3 Path Planning

Path planning is a complex task that involves a number of different factors and considerations.
One important aspect is the ability to create an accurate map of the vehicle’s surroundings. This
typically involves using sensors such as cameras and lidar to gather data about the environment,
which is then processed by algorithms to create a detailed map. Once the vehicle has a map of
its surroundings, it must use this information to plan a safe and efficient route to its destination.
This involves considering factors such as the speed and direction of other objects, traffic rules,
and the vehicle’s own capabilities. The vehicle must also be able to update its path plan in real
time as the environment around it changes. Another important aspect of path planning is the
ability to handle uncertainty. Since the vehicle’s surroundings are constantly changing, the path
plan must be able to adapt to new information and unexpected events. This may involve using
techniques such as probabilistic modeling to account for potential obstacles or uncertainties in the
environment. Overall, the success of an autonomous vehicle’s path planning system is determined
by its ability to accurately map the environment, plan a safe and efficient route, and adapt to
changes and uncertainties in real time.

9

3 Path Planning Algorithms

Path planning algorithms are used to find the shortest or most efficient path between two points
in a given environment. These algorithms are commonly used in robotics, autonomous driving,
and other applications where it is important to find the best way to navigate through a complex or
changing environment. There are many different algorithms that can be used for path planning, but
three of the most common ones are A* algorithm, Dijkstra’s algorithm, and the Rapidly-exploring
Random Tree(RRT) algorithm. In the following sections, I will give a briefly overview of each of
them and their applications in various fields.

3.1 A* Search Algorithm

A* is well known for its use in video games, and with the development of artificial intelligence
and technology, the A* algorithm has become one of the most common algorithms used in mod-
ern technology industry — autonomous driving. The A* search algorithm is an extension of the
Dijkstra’s algorithm(which we will be discussed next) that uses an additional heuristic function to
guide the search and expedite the process of finding the shortest path between two points. This
heuristic function estimates the cost of the cheapest path from the current node to the goal node.
By using this estimated cost, the A* algorithm is able to intelligently search the game environment
and quickly find the optimal path for the game character to follow.

3.1.1 Explanation

The A* algorithm is a type of search algorithm that is commonly used in computer science for
finding the shortest path between two points. It combines the strengths of both the breadth-first
search and the uniform-cost search algorithms, while avoiding their weaknesses.

The A* algorithm works by maintaining a list of nodes to be explored, called the open list, and a
list of nodes that have already been explored, called the closed list. At each step, the algorithm
chooses the node on the open list that has the lowest estimated total cost (i.e. the sum of the cost
to reach that node and the estimated cost to reach the goal from that node) and expands it, adding
any resulting child nodes to the open list if they are not already on the open list or on the closed list.

The key difference between the A* algorithm and other search algorithms is that it uses a heuristic
function to estimate the cost to reach the goal from a given node. This heuristic function must be
both admissible (i.e. it must never overestimate the cost to reach the goal) and consistent (i.e. the
estimated cost to reach the goal from a given node must be less than or equal to the sum of the
estimated cost to reach its successor plus the cost of the edge connecting the two nodes). Using
this heuristic function, the A* algorithm can quickly discard many potential paths that would be
considered by other search algorithms, allowing it to focus on the most promising paths and find
the shortest path more quickly. This makes it a powerful tool for solving complex search problems.

3.1.2 Example

The examples are from geeksforgeeks, it can be found at here.

10

https://www.geeksforgeeks.org/a-search-algorithm/

3.1.3 Pseudo Code[14]

f unc t i on r e con s t ruc t pa th (cameFrom , cur rent)
t o t a l pa th := { cur rent }
whi le cur rent in cameFrom . Keys :

cur r ent := cameFrom [cur rent]
t o t a l pa th . prepend (cur rent)

re turn t o t a l pa th

func t i on A Star (s ta r t , goal , h)

openSet := { s t a r t }

cameFrom := an empty map
gScore := map with d e f au l t va lue o f I n f i n i t y
gScore [s t a r t] := 0

fSco r e := map with d e f au l t va lue o f I n f i n i t y
fS co r e [s t a r t] := h(s t a r t)

whi l e openSet i s not empty
cur rent := the node in openSet having the lowest fS co r e [] va lue
i f cur rent = goa l

re turn r e con s t ruc t pa th (cameFrom , cur rent)

openSet . Remove(cur rent)
f o r each neighbor o f cur r ent

t en t a t i v e gS co r e := gScore [cur r ent] + d(current , ne ighbor)
i f t e n t a t i v e gS co r e < gScore [ne ighbor]

cameFrom [neighbor] := cur rent
gScore [ne ighbor] := t en t a t i v e gS co r e
fS co r e [ne ighbor] := t en t a t i v e gS co r e + h(neighbor)
i f ne ighbor not in openSet

openSet . add (ne ighbor)

re turn f a i l u r e

11

3.2 Dijkstra’s Algorithm

Dijkstra’s algorithm is a popular algorithm used for finding the shortest path between two points in
a graph. It is often used in network routing and other applications that require finding the optimal
path between two points. The algorithm works by starting at the source node and exploring the
neighboring nodes, updating their distances from the source node as it goes. The algorithm then
proceeds to the next node with the smallest distance from the source and repeats the process until
it reaches the destination node.

3.2.1 Explanation

In order to create a shortest path tree, Dijkstra’s algorithm solves the single-source shortest path
issue for a graph with non-negative edge weights. This algorithm is frequently used in routing and
in other graph algorithms as a subroutine. Edsger W. Dijkstra, a computer scientist, came up with
the idea in 1956, and it was published three years later.

The algorithm works by maintaining a set of nodes for which the shortest path from the source node
is known. Initially, this set only contains the source node. The algorithm then iterates over the
nodes in the graph, considering each unvisited node and relaxing the edges that connect it to other
nodes in the graph. This process continues until all nodes have been visited and the shortest path
to each one is known. One of the key features of Dijkstra’s algorithm is its use of a priority queue
to order the nodes that are candidates for exploration. This allows the algorithm to efficiently
explore the nodes in the order that is most likely to produce the shortest path. Overall, Dijkstra’s
algorithm is a powerful and efficient tool for solving the single-source shortest path problem on a
graph with non-negative edge weights.

3.2.2 Example

The example is from geeksforgeeks, a more detailed description can be found at here.

1 2 3

4

567

80

8 7

9

10

144

2

6

21

7

11

4

8

QUESTION: Given the graph shows above, and source = node(0); Find the shortest paths from
the source to node(4).

Solution:
The minimum distance from node(0) to node(4) = 21. We need to take the following steps
0 → 7 → 6 → 5 → 4. When using the Dijkstra’s Algorithm to find the shortest path from
node(0) to node(4), We use vector to keep track of the visited nodes. The vertices in order they
are marked is as follow: 0, 1, 7, 6, 5, 2, 8, 3, 4.

12

https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/

3.2.3 General Implementation by C++[15]

template<typename Location , typename Graph>
void d i j k s t r a s e a r c h

(Graph graph ,
Locat ion s ta r t ,
Locat ion goal ,
s td : : unordered map<Location , Location>& came from ,
std : : unordered map<Location , double>& c o s t s o f a r)

{
Prior ityQueue<Location , double> f r o n t i e r ;
f r o n t i e r . put (s ta r t , 0) ;

came from [s t a r t] = s t a r t ;
c o s t s o f a r [s t a r t] = 0 ;

whi l e (! f r o n t i e r . empty ()) {
Locat ion cur rent = f r o n t i e r . get () ;

i f (cur r ent == goa l) {
break ;

}

f o r (Locat ion next : graph . ne ighbors (cur rent)) {
double new cost = c o s t s o f a r [cur r ent] + graph . co s t (current , next) ;
i f (c o s t s o f a r . f i nd (next) == c o s t s o f a r . end ()

| | new cost < c o s t s o f a r [next]) {
c o s t s o f a r [next] = new cost ;
came from [next] = cur rent ;
f r o n t i e r . put (next , new cost) ;

}
}

}
}

13

3.3 RRT Algorithm

RRT, or Rapidly-Exploring Random Tree, is an algorithm used for path planning and robot motion
planning in complex environments. It is a probabilistic algorithm that generates a tree of possible
paths by randomly exploring the environment and connecting these paths to a growing tree struc-
ture. As the tree grows, it becomes more likely to find a path to the goal, and the algorithm can
quickly converge on an optimal solution.

3.3.1 Explanation

Rapidly-exploring Random Trees (RRT) is a algorithm used for path planning in robotics and
other fields. The algorithm generates a tree of possible paths, starting from an initial location,
and incrementally expands the tree by adding new random samples from the environment. The
algorithm then uses the tree to find a path from the initial location to a goal location, by connecting
the closest point in the tree to the goal. RRT are particularly useful in environments where
the possible paths are not known in advance, or where the environment is highly dynamic. The
algorithm is able to find paths quickly, even in large and complex environments, by using random
sampling to explore the space. One of the key features of RRT is the use of a nearest-neighbor
search algorithm to find the closest point in the tree to a new random sample. This allows the
algorithm to efficiently connect new samples to the tree and avoid getting stuck in local minima.
Overall, RRT are a useful algorithm for path planning in complex environments.

3.3.2 Example

The examples are from Tim Chinenov, it can be found at here.

3.3.3 Pseudo Code[16]

Rad = r
G(V,E) //Graph conta in ing edges and v e r t i c e s
For i t r in range (0 n)

Xnew = RandomPosition ()
I f Obstac le (Xnew) == True , t ry again
Xnearest = Nearest (G(V,E) ,Xnew)
Cost (Xnew) = Distance (Xnew , Xnearest)
Xbest , Xneighbors = f indNe ighbors (G(V,E) ,Xnew ,Rad)
Link = Chain (Xnew , Xbest)
For x ’ in Xneighbors

I f Cost (Xnew) + Distance (Xnew , x ’) < Cost (x ’)
Cost (x ’) = Cost (Xnew)+Distance (Xnew , x ’)
Parent (x ’) = Xnew
G += {Xnew , x ’}

G += Link
Return G

14

https://theclassytim.medium.com/robotic-path-planning-rrt-and-rrt-212319121378

4 Algorithms Analysis

4.1 Strengths for Each Algorithm

• A* Search Algorithm

– A* is capable of finding the shortest path between two points, even in complex environ-
ments with many obstacles.

– A* is flexible and can be easily adapted to different types of problems by using different
heuristics, or rules of thumb, to guide the search process.

– A* is efficient and can be used to solve large problems quickly, thanks to its use of
heuristics to guide the search process and eliminate unnecessary steps.

– A* is reliable and produces consistent results, as long as the heuristics used are consistent
and accurate.

– A* is easy to implement and understand, making it a popular choice for many applica-
tions.

• Dijkstra’s Algorithm

– Dijkstra’s algorithm is capable of finding the shortest path between two points in a
graph, even in complex environments with many obstacles.

– Dijkstra’s algorithm is efficient and can be used to solve large problems quickly, thanks
to its use of a priority queue to prioritize the exploration of nodes.

– Dijkstra’s algorithm is reliable and produces consistent results, as long as all edge weights
are non-negative.

– Dijkstra’s algorithm is easy to implement and understand, making it a popular choice
for many applications.

– Dijkstra’s algorithm can be easily extended to handle additional constraints, such as
time-dependent edge weights or multiple objectives.

• RRT Algorithm

– RRT are capable of finding paths in complex environments with many obstacles, even
in high-dimensional spaces.

– RRT are probabilistic algorithms, which means that they can find a solution even when
one is not guaranteed to exist.

– RRT are efficient and can be used to solve large problems quickly, thanks to their incre-
mental nature and the use of random sampling to guide the search process.

– RRT are flexible and can be easily adapted to different types of problems by using
different heuristics to guide the search process.

– RRT are easy to implement and understand, making them a popular choice for many
applications.

15

4.2 Limitations for Each Algorithm

• A* Search Algorithm

– A* is only guaranteed to find the shortest path between two points if the heuristics used
are consistent and admissible, meaning that they never underestimate the true cost of
reaching the goal.

– A* requires the use of heuristics, which can be difficult to come up with for some prob-
lems. In these cases, the performance of A* may be limited by the quality of the heuristics
used.

– A* can be computationally intensive, especially for large or complex problems. In these
cases, it may be necessary to use more efficient variants of A* or to use other algorithms
altogether.

– A* is only applicable to problems that can be represented as a graph, where the nodes
represent states and the edges represent the transitions between states. This may limit
its applicability to some types of problems.

– A* is not well-suited to dynamic environments where the costs of reaching the goal may
change over time. In these cases, it may be necessary to use other algorithms that can
adapt to changes in the environment.

• Dijkstra’s Algorithm

– Dijkstra’s algorithm is only guaranteed to find the shortest path between two points if
all edge weights are non-negative.

– Dijkstra’s algorithm is a greedy algorithm, which means that it only considers the cost
of reaching the next node and does not consider the cost of reaching the goal from that
node.

– Dijkstra’s algorithm is computationally intensive, especially for large or complex prob-
lems.

– Dijkstra’s algorithm is only applicable to problems that can be represented as a graph,
where the nodes represent states and the edges represent the transitions between states.

– Dijkstra’s algorithm is not well-suited to dynamic environments where the costs of reach-
ing the goal may change over time.

• RRT Algorithm

– RRT are probabilistic algorithms, which means that they can find a solution even when
one is not guaranteed to exist.

– RRT can be computationally intensive, especially for large or complex problems.

– RRT are only applicable to problems that can be represented as a graph, where the
nodes represent states and the edges represent the transitions between states.

– RRT are not well-suited to dynamic environments where the costs of reaching the goal
may change over time.

– RRT require the use of heuristics to guide the search process, which can be difficult to
come up with for some problems.

16

4.3 Potential Future Research Directions

• Developing more efficient algorithms for path planning, such as algorithms that can solve
large or complex problems more quickly or that can find solutions with higher quality.

• Investigating the use of machine learning and other artificial intelligence techniques for path
planning, such as reinforcement learning, evolutionary algorithms, or neural networks.

• Exploring the use of path planning algorithms for new applications, such as autonomous
vehicles, drones, or space exploration.

• Investigating the use of path planning algorithms in dynamic or uncertain environments,
where the costs of reaching the goal may change over time or where the goal itself may be
unknown or uncertain.

• Developing new heuristics or other methods for guiding the search process in path planning
algorithms, such as methods that can incorporate additional information or constraints into
the search process.

17

5 Summary

Path planning algorithms are a critical component of autonomous systems, such as robots and self-
driving cars. These algorithms are used to generate feasible and safe paths for the system to follow,
taking into account the system’s capabilities and the characteristics of the environment in which
it is operating. The algorithms are used to determine the optimal path for a vehicle or robotics to
follow, the main goal is to find a path that avoids obstacles, reaches a destination efficiently, and
satisfies other constraints such as traffic regulations.

In recent years, there has been significant research and development in the area of path plan-
ning algorithms. A variety of different algorithms have been proposed and tested, each with its
own strengths and weaknesses. These algorithms can be broadly classified into two categories: lo-
cal planning algorithms and global planning algorithms. Local planning algorithms are designed to
generate paths in the immediate vicinity of the system, based on information about the immediate
environment. These algorithms are typically fast and efficient, but they can only generate paths
in a limited area and may not be able to find a feasible path if the environment is cluttered or has
other constraints. Global planning algorithms, on the other hand, are designed to generate paths
over a larger area, taking into account the global structure of the environment. These algorithms
are typically more computationally intensive, but they are able to generate feasible paths in a wider
range of environments and can find paths that avoid obstacles and constraints.

Overall, the field of path planning algorithms is an active area of research, with a wide range
of algorithms being developed and tested. The choice of algorithm will depend on the specific
application and the characteristics of the environment in which the system is operating. With the
further development of hardware devices, sensors, and artificial intelligence, path planning will also
see another peak in its development. I believe that in the near future, the application of path plan-
ning algorithms in the autonomous driving industry will bring the human society an unbelievable
changes!

18

References

[1] Shneiderman, B. 2022. Introduction: What are the goals of AI research? Human-Centered AI,
87–92. https://doi.org/10.1093/oso/9780192845290.003.0011

[2] Frankenfield, Jake. “Artificial Intelligence: What It Is and How It Is Used.” Investopedia, In-
vestopedia, 12 Sept. 2022, www.investopedia.com/terms/a/artificial-intelligence-ai.
asp

[3] Brown, Sara. “Machine Learning, Explained.” MIT Sloan, 21 Apr. 2021,
mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained.

[4] Staff, Editorial. “Ai Robots and Robotics: Difference, Current Examples of Ar-
tificially Intelligent Robots, and Role of Software Robots.” Ai.nl, Editorial Staff
Https://Secure.gravatar.com/Avatar/988c77cad41d1c55b988bff2c4600e8b?s=96&

amp;d=Mm&r=g,6Nov.2022,www.ai.nl/knowledge-base/robots-robotics/

[5] Banzhaf, Wolfgang, and Ting Hu. “Evolutionary Computation.” Evolutionary Biology, 2019,
doi:10.1093/obo/9780199941728-0122.

[6] Nakisa, Bahareh, et al. “Evolutionary Computation Algorithms for Feature Selection of EEG-
Based Emotion Recognition Using Mobile Sensors.” Expert Systems with Applications, vol.
93, 2018, pp. 143–155., doi:10.1016/j.eswa.2017.09.062.

[7] SAE. “The 6 Levels of Vehicle Autonomy Explained.” Synopsys Automotive, www.synopsys.
com/automotive/autonomous-driving-levels.html

[8] Mochihashi, D. (2020). Robotics, grounding and natural language processing. Journal of Nat-
ural Language Processing, 27(4), 963–968. https://doi.org/10.5715/jnlp.27.963

[9] Ikeuchi, K., Matsushita, Y., Sagawa, R., Kawasaki, H., Mukaigawa, Y., Furukawa, R., amp;
Miyazaki, D. (2020). Robot Vision, autonomous vehicles, and Human Robot Interaction. Ac-
tive Lighting and Its Application for Computer Vision, 289–303. https://doi.org/10.1007/
978-3-030-56577-0_12

[10] Shi, W., amp; Liu, L. (2021). Autonomous driving landscape. Computing Systems for Au-
tonomous Driving, 1–18. https://doi.org/10.1007/978-3-030-81564-6_1

[11] Budrich, V. B. (2020). Defending autonomous driving. Keeping Autonomous Driving Alive,
103–118. https://doi.org/10.2307/j.ctv10kmf41.10

[12] Cadence System Analysis. “The Use of Radar Technology in Autonomous Vehi-
cles.” Cadence, 13 Oct. 2022, https://resources.system-analysis.cadence.com/blog/

msa2022-the-use-of-radar-technology-in-autonomous-vehicles

[13] A* search algorithm. GeeksforGeeks. (2022, May 30). Retrieved December 10, 2022, from
https://www.geeksforgeeks.org/a-search-algorithm/

[14] Prasanna. (n.d.). A* algorithm (graph traversal and path search algorithm). enjoyalgo-
rithms. Retrieved December 12, 2022, from https://www.enjoyalgorithms.com/blog/

a-star-search-algorithm

19

https://doi.org/10.1093/oso/9780192845290.003.0011
www.investopedia.com/terms/a/artificial-intelligence-ai.asp
www.investopedia.com/terms/a/artificial-intelligence-ai.asp
Https://Secure.gravatar.com/Avatar/988c77cad41d1c55b988bff2c4600e8b?s=96&d=Mm&r=g, 6 Nov. 2022, www.ai.nl/knowledge-base/robots-robotics/
Https://Secure.gravatar.com/Avatar/988c77cad41d1c55b988bff2c4600e8b?s=96&d=Mm&r=g, 6 Nov. 2022, www.ai.nl/knowledge-base/robots-robotics/
www.synopsys.com/automotive/autonomous-driving-levels.html
www.synopsys.com/automotive/autonomous-driving-levels.html
https://doi.org/10.5715/jnlp.27.963
https://doi.org/10.1007/978-3-030-56577-0_12
https://doi.org/10.1007/978-3-030-56577-0_12
https://doi.org/10.1007/978-3-030-81564-6_1
https://doi.org/10.2307/j.ctv10kmf41.10
https://resources.system-analysis.cadence.com/blog/msa2022-the-use-of-radar-technology-in-autonomous-vehicles
https://resources.system-analysis.cadence.com/blog/msa2022-the-use-of-radar-technology-in-autonomous-vehicles
https://www.geeksforgeeks.org/a-search-algorithm/
https://www.enjoyalgorithms.com/blog/a-star-search-algorithm
https://www.enjoyalgorithms.com/blog/a-star-search-algorithm

[15] Dijsktra’s algorithm. GeeksforGeeks. (2022, August 31). Re-
trieved December 10, 2022, from https://www.geeksforgeeks.org/

dijkstras-shortest-path-algorithm-greedy-algo-7/

[16] Abiy, T., Pang, H., amp; Tiliksew, B. (n.d.). A* search. Brilliant Math amp; Science Wiki. Re-
trieved December 10, 2022, from https://brilliant.org/wiki/a-star-search/#:~:text=

The%20pseudocode%20for%20the%20A,presented%20with%20Python%2Dlike%20syntax.

&text=The%20time%20complexity%20of%20A,search%20space%20is%20a%20tree

20

https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/
https://brilliant.org/wiki/a-star-search/#:~:text=The%20pseudocode%20for%20the%20A,presented%20with%20Python%2Dlike%20syntax.&text=The%20time%20complexity%20of%20A,search%20space%20is%20a%20tree
https://brilliant.org/wiki/a-star-search/#:~:text=The%20pseudocode%20for%20the%20A,presented%20with%20Python%2Dlike%20syntax.&text=The%20time%20complexity%20of%20A,search%20space%20is%20a%20tree
https://brilliant.org/wiki/a-star-search/#:~:text=The%20pseudocode%20for%20the%20A,presented%20with%20Python%2Dlike%20syntax.&text=The%20time%20complexity%20of%20A,search%20space%20is%20a%20tree

	Introduction to Artificial Intelligence
	Machine Learning
	Robotics
	Evolutionary Computation
	Natural Language Processing
	Computer Vision

	Autonomous Driving
	The 6 Levels of Vehicle Autonomy
	Three Primary Sensors
	Path Planning

	Path Planning Algorithms
	A* Search Algorithm
	Explanation
	Example
	Pseudo Codea1

	Dijkstra's Algorithm
	Explanation
	Example
	General Implementation by C++Dijsktra

	RRT Algorithm
	Explanation
	Example
	Pseudo CodeRRT

	Algorithms Analysis
	Strengths for Each Algorithm
	Limitations for Each Algorithm
	Potential Future Research Directions

	Summary

