CMSC 216 Project #6 Spring 2022

Date due: Thursday, April 7, 11:59:59 p.m.
1 Introduction and purpose

The Nelovo computer company wants to develop a new operating system to run on its new CPUs, which you are familiar
with from Projects #3 and #4. The operating system’s code name during development is Ournix. Due to your increasing
proficiency in C, which Nelovo has heard about, they want to hire you as an intern to write a small simulation of the
filesystem component of the planned operating system, so they can see how it will appear to users. Your simulation will
model the filesystem and a few of the most common commands. Your code will allow simulated files and directories to
be created, and permit navigating around the directory structure by changing the current location in the filesystem. The
purpose of the project is to create and manipulate a dynamically—allocated linked data structure in C. You will have to
write a makefile that will compile your code with all of the public tests, so you will get more practice with makefiles.
Another purpose is to get some basic experience with a few C string library functions. You must use the string library
functions to manipulate string data (names) rather than write code (loops or recursion) that duplicates their effects.

You will create your own data structure for storing the components of a simulated Ournix filesystem. Think about
how to design the project and ask the TAs in office hours if you have questions prior to starting to code. Keep in
mind that your design for the project, just like your implementation, is individual work only, and other than asking the
instructional staff in office hours, you cannot discuss your design or data structures with fellow students, or anyone else.

This project will be difficult, because although a working data structure is not more complex than ones you would
have created in CMSC 132, many bugs can arise when first using dynamically—allocated linked data structures in C.

The way to find bugs that will arise when using linked data structures in C is to use the gdb debugger, so you must
know how to use gdb, and to have used it to throughly debug your code before asking for debugging help in the TAs’
office hours. The TAs will not debug code for you that you have not already made every effort to debug yourself first.
If you need help in knowing how to use gdb, ask the TAs in office hours.

As explained below, some of the tests will check for memory leaks and memory errors resulting in heap corruption
(having invalid data in the heap). You can find these types of errors by running valgrind on all the public tests. You
must also know how to use valgrind, and to have used it to try to fix any problems that it identifies (see below)
before asking for debugging help in the TAs’ office hours. The TAs will not look at code that you have not already
run valgrind on and tried to fix memory errors in. (See Appendix B regarding using valgrind on the project tests.)

1.1 Extra credit

You can again get extra credit for this project. If you make only one submission that passes all the public tests you
will get 7 extra—credit bonus points. And if your single submission is made at least 48 hours before the on-time
deadline you will get 8 additional extra credit bonus points, for 15 extra credit points total. (Obviously you can’t get
the second 8 extra credit points if you don’t get the first 7, but you can get the first 7 without getting these second 8.)
However, as before, if you make too many submissions you may again lose credit. To avoid making submissions
that don’t compile or don’t pass all of the public tests you should compile the tests, run them, check your output, and
fix any problems, all before submitting. And you should test your makefile and run valgrind, as explained below.

2 Filesystem components

Your code will allow both regular files and directories to be simulated. Note that Ournix is superficially rather similar
to UNIX, although your simulation will be much simpler. Both files and directories have names.

* A file for this project just consists of a name; it does not have any contents, although it does have a simulated
timestamp (see below). Files are located in directories.

* A directory can store both files and other directories (subdirectories). A directory can contain zero or more
files and zero or more subdirectories. A directory cannot contain multiple components (files or subdirectories)
that have the same name, but it can contain components with the same names as components located in other
directories. For example, a directory a can contain a file or subdirectory named z, and another directory b can
also contain a file or subdirectory z. A directory named z can even contain a file or subdirectory named z.

© 2022 L. Herman; all rights reserved 1



Note that an Ournix variable must have some mechanism to keep track of its current location (the current direc-

tory) at all times.
Names of files and directories consist of sequences of one or more characters, with the exceptions that they may
not be named either “.” (a single period character), “..” (two adjacent period characters), or “/” (the forward—slash
character), and they cannot contain a forward—slash character anywhere. These symbols all have special meanings in

your simulation, as they do in UNIX:

* A single period character refers to the current directory. After your functions are used to create directories the
current location in the filesystem may be changed, and functions that refer to or operate upon the contents of the

@ 9

directory *“.” use whichever directory happens to be current at the time they are called.

* Two adjacent period characters refer to the parent of the current directory, meaning the one immediately above it

6 9

in the directory structure. (For the root directory, “..” is the same as ““.” because there is no directory above it.)

* The forward—slash character refers to the root directory, which always exists as the topmost directory of an entire
filesystem, and is either the direct parent, or the indirect ancestor, of all other files and directories. The root
directory is the only file or directory that has no parent. No other directory in a filesystem may be named *“/”
other than the special root directory, or contain a forward—slash character in its name.

File and directory names can begin with a period character, as in the example “. sheep”, and are not treated any
differently from other file and directory names (unlike in UNIX, where an initial period in a file or directory name
means that it is hidden). Also, file and directory names may contain spaces or characters such as *, or other punctuation
symbols that have special meanings to the shell in UNIX, but have no significance in this project.

3 Data structure requirements, and memory management

There is no maximum size for a simulated Ournix filesystem— it may contain any number of files and any number of
directories and subdirectories, limited only by the amount of memory in the computer running your program. Similarly,
the name of a file or directory may be an arbitrarily long string. Situations where programs have to store an unknown
amount of data, or data structures where there is no limit to the amount of data that needs to be stored, are natural
applications of dynamic memory allocation and linked data structures.

As mentioned, you will create your own data structure for storing the components of a filesystem. The header file
ournix.h in the project tarfile contains the prototypes of the required functions, but it has no type definitions. Instead
it includes another header file ournix-datastructure.h that is not provided. You must write this file (whose name
must be spelled and capitalized exactly as shown), which must contain a definition of the type Ournix that represents
a filesystem, and which all of the functions operate upon. ournix-datastructure.h may also contain any other
definitions that are needed for your Ournix definition. The requirements that your data structure must follow are:

* You must use only dynamically—allocated data structures to store all of the data and components of filesystems.
You could certainly get the functions to work for many cases without using dynamically—allocated data structures
(for example, by using fixed—size arrays instead), but since the entire purpose of the project is to use linked data
structures and memory management in C, you will not receive credit for the project in that case.

* Your filesystem data structure can only use linked, dynamically—allocated data structures. Other than for stor-
ing file and directory names, no arrays can be used— and even file and directory names must be stored in
dynamically-allocated arrays (strings). You cannot use any fixed—size arrays anywhere in your filesystem data
structure. If any of your type definitions in ournix-datastructure.h use square braces ([]) anywhere, you
are using fixed—size arrays, which is disallowed. (Function parameters with square braces are not part of your
filesystem data structure, so they are fine.)

If you have any doubts about whether you are violating these requirements you can always discuss your planned
design with the TAs during office hours before starting to code.

There are no requirements for your own tests, so these restrictions do not apply to them, only to your simulated
filesystem implementation.

© 2022 L. Herman; all rights reserved 2



3.1 Memory management

A robust C program should always check that all memory allocations succeed, and take appropriate action if not. (The
appropriate action might just be gracefully exiting the program, but it at least should not be just crashing). However, to
avoid one thing to have to do in the project you may assume that all memory allocations always succeed, so you are
encouraged but not required to check the return values of calls to memory allocation functions.

A robust C program should always free all dynamically allocated memory when it’s no longer needed, to prevent
memory leaks. However, most of the public tests do not require that memory is freed, so most of them will pass even
if there are memory leaks. You will write functions that free the memory of a Ournix variable and remove components
from it, but only a few of the public tests use these functions. However, many of the secret tests will use them, meaning
that many of the secret tests will pass only if memory is being correctly freed where your code would need to free it.

Any tests that are not requiring that memory be freed will have memory leaks, which you don’t have to worry about.
(Of course if you leak the entire heap memory and ask for more the operating system will terminate your program, but
given the sizes of inputs your functions will be run on, that should not occur.)

4 Compiling using make

You must write a makefile, which will be used to compile your code for all the public tests, so it must have a rule for
each public test present in the project tarfile. Since you won’t know how many secret tests there are, or what their
dependencies should be, we will use our own makefile to compile them.

Do not wait to write your makefile. Write it first— before you even start writing your code. (That is why
this section appears before the required functions are even described.) Writing your makefile first will preclude the
need to type commands for compiling the public tests, so you can save time and avoid making mistakes. Much more
importantly, mistakes in writing a makefile can cause your code to not compile correctly— writing your makefile first
and using it all during development, every time you compile your code, will allow you to ensure it works right. So what
you should do is to read the rest of this assignment to understand what you have to do, look at the public tests and figure
out how they would have to be compiled and what their dependencies are, then write your makefile first. Then write
your Ournix definition in ournix-datastructure.h and write the functions. The requirements for your makefile are:

* It must be in a file named Makefile (with a capital first letter). (Your code will not compile on the submit server
if your makefile name is wrong.)

It must use the five gcc options -ansi, -pedantic-errors, -Wall, -fstack-protector-all, and -Werror,
which were mentioned in the first project, to build object files. (But do not use these options to create executable
files.) It does not matter if your makefile contains -g (to be able to run gdb or valgrind) with the other options.

* Your Makefile must contain the following targets:

all: This target must appear first and must create executables for all the public tests (and only for the public
tests).

ournix.o: This target must create the object file for ournix.c.

an object file for each public test source file: Because your makefile is required to use separate compilation,
it will need to create an object file for each public test source file.

Note that different tests will have different dependencies, which you can see by looking at what they include.

an executable for each public test: Your makefile will need to have a separate target to build each public test
executable. These targets must have names ending in .x (public@1.x, public@2.x, etc.) and must build
executables with the same filenames as those targets. (Your code will not work on the submit server if your
makefile has incorrect target names or builds executables with the wrong names.) By looking at the source
file for each public test you can see what object files have to be linked together to create it.
Because your makefile is required to use separate compilation, it must link the appropriate object files
necessary to build each executable, not directly compile multiple source files together to form executables.
So there should never be more than one source (. c) file in any compilation command in your makefile.
As above, different tests will have different dependencies and will require different object files to be linked
together to create their executable.

© 2022 L. Herman; all rights reserved 3



clean: This target must remove the object files and executables for all the public tests and ournix.o from the
current directory.

* Your makefile may contain additional targets, for example to build your own tests, as long as it has the targets
described above. However, do not add any of your own tests to the all target, because things may not work on the
submit server if you do.

* Your makefile should not directly compile header files in compilation commands (e.g., do not have compilation
commands like gcc -c ournix.c ournix.h).

* Your makefile should have all needed dependencies, otherwise programs may not get built correctly, but it should
not have any unnecessary dependencies, because that would lead to unnecessary compilations.

* Section 6 below explains that a few public tests use two functions that are defined in a provided compiled ob-
ject file named memory-checking.o and (with associated header file memory-checking.h). Section 7 explains
that one test also uses a function that is defined in a provided object file driver.o (with associated header file
driver.h). You will have to add these two object files to the compilation commands in your makefile for the
tests that use the functions in them. The public test executables that use the functions in these object files, and the
object files for the tests that use them, will have different dependencies than the executables and object files for
the other tests, and an additional object file must be linked to form the executable for these tests compared to the
other public test executables.

* Do not have targets in your makefile to create memory-checking. o or driver.o, because you are not being given
their source files memory-checking.c or driver.c. Just use memory-checking.o and driver.o in the linking
rules for tests that call the functions in the associated header files, without having rule creating these object files.
But your makefile must recompile anything that uses these object files if they were to change (for example, if
we were to give you new versions of these object files to fix a bug).

And if any files include memory-checking.h or driver.h they must be recompiled if these header files were
changed as well. (Even though you should not change them, we could need to give you a new version of them.)

* Your clean target should remove all object files other than memory-checking.o and driver.o. (If did remove
these object files it would just force you to extract them again from the project tarfile after running make clean.)
So don’t use a wildcard in your clean target to remove *.o (instead just explicitly list all the object files that
should be removed).

* Make has many features that were not explained in class, because they are difficult for a beginner to use correctly.
You can only use the features of make that were covered in class. If you use features not explained in class
your code may not compile on the submit server for reasons not worth explaining, and the TAs can not help fix
makefiles using features not covered. You will lose credit for using any makefile features not covered in class.

Almost every past student who tried to use advanced features of make in this course made at least some mistakes.
So you should write a simple and straightforward makefile, using just the features of make that were covered.

If there is no makefile with your submission, or if your makefile does not satisfy these requirements, either your
program will not compile at all on the submit server, or it might compile for the public tests but not for the secret tests.

Before submitting, you must run make clean, then run the commands make public@1.x, make public@2.x, make
public@3.x, etc., to ensure your makefile builds all the public tests correctly. (Use these separate commands, not make
or make all.) Your makefile has to able to build the tests like this on the submit server— meaning when there are no
executable or object files in the directory— so test it in the same situation to ensure it works right then.

To reiterate, your Makefile must use separate compilation— each source file needed to form an executable must be
separately compiled, then the independent object files linked together, to form the executable.

5 Functions to be written

The functions to be written all have a pointer to an Ournix (i.e., Ournix =*) parameter. For brevity, wording like “the
function’s Ournix parameter” is used to mean “the Ournix variable that the function’s pointer parameter points to”.
Phrases like “the root directory” or “the current directory” refer to that directory in the function’s Ournix parameter.
Two functions (1s() and pwd()) can produce output; the rest only modify their Ournix parameter or return a value.

© 2022 L. Herman; all rights reserved 4



Some cases below are described as error cases. For any error cases the functions should not have any effect, meaning
they should not modify anything in their Ournix parameter, and if they have a return value they should just return 0 in
error cases. All non—void functions should return 1 in all cases other than the error cases described.

To avoid repetition these are stated just once here, but don’t forget about them. It is an error case if any function’s
pointer or array parameter is NULL. (The function should have no effect in this case, and just return O if it is a
non—-void function.) For the functions that have a character string argument, it is also an error case if name contains
a forward—slash character and does not consist solely of a forward—slash character (e.g., ““/” is not an error but “/a”,
“a/b”, and “//” are errors).

To get a good idea of what your functions have to do and how they will be called, study the public tests carefully
and be sure to understand their output, after reading the descriptions of the functions below, but before starting to code.

Be sure to carefully read the requirements in Appendix B before starting to code, because you will lose credit
for not following them.

Write one function at a time (entirely or even partially), then test it (as soon as that is possible) thoroughly before
going on! Write and test helper functions (for example, utility functions to manipulate your data structures) before
writing code that uses them, and test them separately first as well.

Your project will consist of three required user—written files: Makefile, ournix-datastructure.h, and ournix.c.
The required functions will all be in ournix.c.

The part of the filesystem and the commands that your functions simulate are extremely limited compared to what
the behavior of the real UNIX filesystem and commands would be, and also differs in various respects. (An example
is that file and directory names can contain punctuation characters here that have special meanings in real UNIX.) You
should implement what this project assignment says, not what real UNIX would do, in any case where these differ. The
reason that your project does not faithfully imitate real UNIX in various respects is just to make the project much easier.

5.1 The function for initializing a filesystem void mkfs(Ournix *const filesystem)

This function should initialize its Qurnix parameter, but exactly what that will do depends upon the way you decide to
represent and store the components of a filesystem (meaning what your definition of Ournix is, and how it will need to
be initialized). This function will be called to initialize any Ournix variable, before any other operations are performed
on that variable. After calling this function the initialized parameter should contain or consist of only a root directory,
and the root directory should be that filesystem’s current directory.

Note that the caller created the variable that the parameter filesystem points to, and is just passing its address
into this function. mkfs() may or may not have to allocate memory for the Ournix— depending on your data structure—
but the variable that its parameter filesystem points to already exists— it was created in whatever code is calling this
function— so it should net itself be allocated by this function. The parameter should just be initialized, assuming its
contents are currently just uninitialized (garbage).

A call to mkfs() must initialize its parameter such that calling mkfs() on different Ournix variables causes each
one to represent a different filesystem. In other words, calling mkfs() on different Ournix variables will not cause
them to share any files or directories.

5.2 Functions for creating files and directories
5.2.1 int touch(Ournix *const filesystem, const char name[])

This function’s effect is to create a file, if it does not already exist, or to update the timestamp of a file if it does already
exist.
* If the function’s argument name is a name that does not refer to an existing file or directory located in the current
directory when the function is called, and it is not one of the special values mentioned below, its effect is to create
a file with that name in the current directory (the current directory is discussed further below). (Recall that it
should then return 1, since the beginning of this section said that functions should return 1 in any cases other than
specifically—indicated error cases.) In our simple simulation a file’s timestamp is just a simple integer. The newly
created file should have a timestamp of 1.

* If name is the name of a file (not a subdirectory) that already exists in the current directory the function’s effect
should be to increment its timestamp by 1.

© 2022 L. Herman; all rights reserved 5



 If name is the name of a subdirectory (not a file) that already exists in the current directory, or is . (a single
period), . ., or / (a single forward—slash), this function should have no effect and should not modify anything but
should return 1 (these are not error cases).

* It is an error case if name is an empty string. The error case mentioned above, where name does not consist solely
of a forward—slash character but contains a forward—slash character somewhere, applies to this function (and also
to the other ones even if not explicitly repeated for each one).

5.2.2 int mkdir(Ournix *const filesystem, const char name[])

The usual effect of this function is to create a subdirectory in the current directory, if it does not already exist.

* If name is a name that does not refer to an existing file or directory located in the current directory, and it is not one
of the special values mentioned below, its effect is to create a subdirectory with that name in the current directory.

* These are all error cases: if name is the name of a file or a subdirectory that already exists in the current directory,
or is . (a single period), or . ., or /, or an empty string.

5.2.3 Notes about touch() and mkdir ()

When these functions have to manipulate file or directory names they should use the string library functions to do so.
Do not write loops (or use recursion) to process strings, or you will lose credit. If these or other functions have to
allocate memory do not cast the return value of the memory allocation functions, or you will also lose credit.

Unlike real UNIX, in this project you can only create files and directories in the current directory— there is no
analogue to commands like mkdir sheep/baa or touch wool/sweater, which are possible in real UNIX (if the
directories sheep and wool exist in the current directory). This is a consequence of the descriptions of the effects of the
functions above. If you want to create a file or directory somewhere other than the current directory, you must first use
cd() to navigate there (which may take multiple calls), then create it.

When a new file or directory is created, these functions must copy their parameter name into a newly—created
dynamically-allocated array (meaning a deep copy) of size just sufficient to store the string. This ensures that the
string, regardless of its size, is stored without wasting memory space. It also ensures correctness if the caller of the
function later modifies or frees whatever they passed into name. These functions cannot just make something in your
data structure point to their parameter name, because many errors will result if they just do pointer aliasing like this.

5.3 The function for navigating around a filesystem int cd(Ournix *const filesystem, const char
name[])

This function’s usual effect is to change the current directory of its Ournix parameter. As mentioned above, an Ournix
variable must have some mechanism to keep track of its current director location at all times.

* If name is the name of a directory that exists as an immediate subdirectory of the current directory, that subdirec-
tory should become the new current directory of its Ournix parameter.

* If name is . (asingle period), or is an empty string, the function should not have any effect, as this simply changes
the current directory to be the current directory (but this is not an error case).

* If name is .., the current directory should change to be the parent directory of the current directory. However,
although the root directory has no parent, if the function is called with name being .. at a time when the root
directory is the current directory, the operation is defined to just have no effect and not modify anything. This is
not an error case. (The special root directory effectively acts as if it were its own parent.)

* If name is / the current directory should change to be the root directory, regardless of what the current directory
previously happened to be.

* It is an error case if name is a name that does not refer to an existing file or directory located in the current
directory, and it is not one of the special values ., .., /, or an empty string. It is also an error case if name is the
name of a file (not a directory) that exists in the current directory.

Note that, unlike real UNIX, there is no way to change to a directory more than one directory away in the filesystem
in one call to this function (except if name is /). In real UNIX, one command could change to a location far away in the

© 2022 L. Herman; all rights reserved 6



filesystem, like for example cd i/love/cute/fuzzy/sheep. Butin this project you would have to call cd() to change
to the subdirectory i, then cd() to change to love, then cd() to change to cute, then cd() to change to fuzzy, and
lastly cd() to change to sheep, to have the same effect. (This is due to the descriptions above of how names containing
forward slashes are error cases.)

5.4 Informational functions
54.1 int 1s(Ournix *const filesystem, const char name[])

This function’s usual effect is to list the files and subdirectories of the current directory, or the files and subdirectories
of its argument, or to list just its argument if that is a file.

 If name is the name of a file that exists in the current directory, the function’s effect is to print the single name
of that file followed by a single blank space and the timestamp of that file, which will always be 1 or more. The
file’s name and timestamp must appear on a line by themselves, and must be followed by a newline.

* If name is the name of a directory that exists as an immediate subdirectory of the current directory, the names of
all of the files and subdirectories that have been created in that subdirectory should be printed, one per line, each
followed by a newline (including the last one).

The list of files and subdirectories should be printed in increasing lexicographic (dictionary) order. For this
project, str1 precedes str2 in lexicographic order (str1 and str2 will be file or subdirectory names) if and only
if stremp(str1, str2) returns a negative value. Filenames should be printed with no preceding or following
punctuation or whitespace, but directory names must be printed ending with a single forward—slash character (/),
to indicate that they are directories, as in the output of the real 1s command when the -F option is used. When
the entire contents of a directory are printed the timestamps of files are omitted after the files’ names themselves.

There may be zero or more files and subdirectories in any directory; if the named directory currently contains no
files or directories then the function should not print any output (not even a newline).

e If name is . (a single period), or is an empty string, the names of all the files and subdirectories in the current
directory should be printed, in the same format described immediately above. If the current directory has no files
or directories then the function should not print any output (not even a newline).

* If name is . ., the names of all the files and subdirectories in the parent of the current directory should be printed,
in the same format described above. Other than the one possible exception at the end of this section this list will
be nonempty, since the parent of the current directory must have at least the current directory as a subdirectory.

* If name is /, the names of all of the files and subdirectories in the root directory should be printed, in the format
described above, regardless of the current directory or location in the filesystem.

It is an error case if name is a name that does not refer to an existing file or directory located in the current
directory at that time, and it is not one of the special values ., .., /, or an empty string.

Note that 1s() does not change the current directory, even if a different directory’s contents should be printed (for
example, if name is / or the name of a subdirectory).

If the current directory is the root directory, and the filesystem contains nothing other than the root directory, the
effect of calling this function with name being . ., or /, or an empty string, will be identical to what would be produced
if name was . (a single period), namely no output should be produced.

5.4.2 void pwd(Ournix *const filesystem)

This function’s effect is to print the full path from the root to the current directory. The path must begin with a forward—
slash character (/), signifying that the root is the base of the entire filesystem and the parent or ancestor of all other
files and directories. Following the slash, the names of all of the directories between the root directory and the current
directory should be printed in order from the top of the filesystem (the immediate subdirectory of the root), ending with
the name of the current directory. Forward slashes must separate the names of the directories along this path, but a slash
must not follow the last (current directory) name. The path should be followed by a newline. Unless its parameter is
NULL the pwd() function always produces at least some output. If the root directory is the current directory only a single
forward slash should be printed.

© 2022 L. Herman; all rights reserved 7



5.5 Functions to remove all or part of a simulated filesystem
5.5.1 void rmfs(Ournix *const filesystem)

This function should deallocate all dynamically—allocated memory that is used by the entire Ournix variable that its
parameter filesystem points to, destroying the filesystem and all its data in the process. The filesystem data structure
should not use any dynamically—allocated memory at all after this function is called.

If the user of your functions wants to avoid memory leaks they must call rmfs() on any Ournix variable after they
are finished using it but before it goes out of scope. Not calling rmfs() will result in memory leaks, which in practice
an actual user of C code would want to avoid.

5.5.2 int rm(Ournix *const filesystem, const char name[])

This function’s usual effect is to remove a file or a directory from the current directory.

* The following are error conditions: if the function’s argument name is a name that does not refer to an existing file
or directory located in the current directory, if it is . (a single period), . ., /, or an empty string, or if it contains a
forward—slash character somewhere.

 If name is the name of a file that exists in the current directory, the function should remove that file from the
current directory and return 1.

* If name is the name of a directory that exists as an immediate subdirectory of the current directory, the function
should remove that directory and all of its contents from the current directory and return 1. (Note that its contents
may also be directories that themselves have contents, etc.)

In removing files and directories the function must ensure that no memory leaks occur. Note that the last file or
directory could be removed from a directory, causing it to become an empty directory with no contents. Of course a
subdirectory could be removed, which would also remove all of its contents, but as a consequence of the description
above, the current directory and the root directory can never be removed by this function. (Of course rmfs() described
above could be called to remove or destroy the entire filesystem.)

5.6 Valid sequences of calls to the functions

All valid sequences of calls to your functions on an Ournix variable must obey the following:
* mkfs() must be the first function called on any Ournix variable.

e After rmfs() is called on an Ournix variable the only function that can be called on that same variable is mkfs ()
again. After calling rmf's(), the effect of calling any of the functions other than mkfs() is undefined.

e After rmfs() and then mkfs() are called on an Ournix variable any of the other functions may again be called
on that variable.

It is perfectly valid to call mkfs() on an Ournix variable after rmfs() is called on it, and mkfs() should reini-
tialize it just as if it was the first time it had ever been called on it. In other words, if a filesystem is created, files
and directories are added, then rmfs () is called on it, followed by mkfs(), new files and directories can be added
just as if it was a newly—created empty filesystem. No memory leaks should occur in this process.

* The only time that mkfs() can be called on an Ournix variable is if it has just been created (no functions at all
have been called on it yet), or immediately after a call to rmfs().

The effect of calling mkfs() on an already initialized Ournix variable— one that mkfs() has already been called
on, which possibly has had files and directories added to it)— is also undefined.

The effect of any sequences of calls to the functions that do not obey these properties is undefined, which means
that your code can do anything in such cases. Ensuring that these properties are not violated is the responsibility of
the caller of your functions (which includes your own tests); your code does not have to try to detect violations of
these properties, and in fact it has no way to do so.

As above, if the user of your functions wants to avoid memory leaks they must call rmfs() on any Ournix variable
after they are finished using it and before it goes out of scope. Note that a sequence of calls to the functions that does
not call rmfs() on a Ournix variable before it goes out of scope will still be a valid sequence if it obeys the properties

© 2022 L. Herman; all rights reserved 8



listed here. Not calling rmf's() will just result in memory leaks. Although a realistic production C program will always
need to avoid memory leaks, i f the user doesn’t care about memory leaks in some programs then they just don’t have
to call rmfs() in them.

6 Memory checking and memory errors

We are supplying you (in the project tarfile) with a compiled object file named memory-checking.o and its associated
header file memory-checking.h. These files define two functions, setup_memory_checking() and check_heap(),
which have no parameters or return value. We use them as follows in a few of the public tests (and many of the secret
tests) to detect memory leaks and heap corruption:

* setup_memory_checking() must be called once in a program before any memory is dynamically allocated; it
sets up things to check the consistency and correctness of the heap. If this function has been called initially, and
the program has any memory errors later (such as overwriting beyond the end of an allocated memory region in
the heap) the program will crash, consequently failing the test.

* check_heap() prints a message indicating whether there is any memory in use in the heap at all.

Some tests will initially call setup_memory_checking(), then call check_heap() after functions are called on
Ournix variables and their memory is then cleared. If the functions that are supposed to remove all or part of your data
structure are not freeing memory properly your program will report that there is some allocated memory in the heap—
meaning a memory leak occurred- causing these tests to fail. (This could also happen if the user calls your functions
in an invalid order, for example by calling mkfs() on a nonempty Ournix variable without calling rmfs() on it first),
but this is their fault. However, you are using our memory checking functions in your tests and you make an invalid
sequence of calls to the functions in these tests, they would fail.)

The facilities we use to perform this memory checking are not compatible with memcheck (valgrind), because
memcheck uses its own versions of the memory management functions, that themselves use some memory in the heap.
Consequently, if you run any tests that use our memory checking functions under valgrind, the test will appear
to fail with a memory leak, even if your code does not have memory leaks. You can use either our memory checking
functions, or valgrind, but both cannot be used at the same time with a program and give correct results. Appendix B
describes how to correctly use valgrind in this project.

7 Test driver

A number of functions must be called to create filesystems and navigate around them to test the various features of the
project. As a result, writing tests to check your code throughly could be time—consuming. To make things easier we
have provided a driver program that calls your functions, simulating the interactive nature of a UNIX shell or command
interpreter. The driver enables you to test a variety of situations without writing any test code at all, by typing commands
the same way they are input to the UNIX shell.

The driver is supplied in the project tarfile as an object file driver.o, since it uses C features that have not been
covered in class. It has an associated header file driver.h, which must be included by any program that uses it. It
provides a single function void driver(Ournix =*filesystem). If you link the driver with your project code and
call this function, it will print a prompt consisting of a single percent sign, and wait for you to enter a command.
It recognizes commands corresponding to each function you have to implement (the command mkfs for the function
mkfs(), the command touch for the function touch(), etc.), each followed by zero or one argument. As each line you
type is read, the driver will break it up into its constituent fields and call your function that has the same name as the
first word on the line entered, passing a following argument, if there is one, to the function. The tenth public test uses
the driver so you can see how it is used there. Here is some additional information about the driver:

* The driver creates and uses exactly one Ournix variable, while our tests (and your tests not using the driver) could
create and use more than one Ournix variable.
* The driver will stop reading input and quit if the commands logout or exit are given, or at the end of the input.

* The driver assumes that no input line is longer than 512 characters, and no word on an input line is longer than 80
characters, so errors may occur if you give it input that exceeds these limits. (These are assumptions our driver
makes, not assumptions your functions should make or need to make.)

© 2022 L. Herman; all rights reserved 9



 If an input line with an invalid command is entered the driver will print the message “Command not found.” If
a valid command is followed by an incorrect number of arguments the driver will print “Invalid arguments.”

Blank input lines or lines consisting of only whitespace are ignored by the driver; after such a line a new prompt
is printed and a new line will be read.

* The driver prints a generic error message ‘“Missing, incorrect, or invalid operand” if any call to your functions
returns the error value 0. If you see this when you don’t expect it then some function of yours must be returning
0 when it should not be. Write tests of your own to figure out which function(s) are returning the wrong value
and in what cases.

* For 1s() and cd(), the driver allows either the command followed by an argument, or the command alone (which
calls the function with an empty string) to be entered.

* The driver does not call mkfs() on its Ournix parameter. Tests using the driver must first perform mkfs before
any other filesystem commands, if the test writer wants their code to work properly. (See the input file for the
tenth public test that uses the driver an example.)

* To avoid having to retype many commands every time the driver is run, you can redirect standard input from a
file containing pretyped commands. (Hint: you used input redirection to run every test in Project #2.) To make it
easy to read the output in this case, the driver recognizes a command “set verbose”, that causes every input line
to be printed to the output before its command is executed. This is useful because when a program is run using
input redirection the input itself is not displayed. A command “unset verbose” is also available, although you
may not have much need for it.

A Development procedure review

A.1 Obtaining the project files, compiling, checking your results, and submitting

Log into the Grace machines and use commands similar to those from before:

cd ~/216
tar -zxvf ~/216public/project@6/project06.tgz

This will create a directory project@6 that contains the necessary files for the project, including the header files
ournix.h, memory-checking.h, and driver.h, the public tests, and the memory-checking.o and driver.o object
files. cd to the project®@6 directory, write your Makefile in it, and create a file in it named ournix. c (spelled exactly
that way) that will include the header file ournix.h, and in it write the functions whose prototypes are in ournix.h.
You will first have to write your type definitions in a header file ournix-datastructure.h.

Commands similar to those before can be used to run tests and determine whether a public test passes, for example:

public@1.x | diff - public@1.output
Because one public test uses the driver, you must redirect input from its corresponding input file when running it:
public10.x < publicl1@.input | diff - publicl10.output

As before, the command submit from the project directory will submit your project. Before you submit you must
make sure you have passed all the public tests, by compiling and running them yourself. Unless you have versions of all
required functions that will at least compile, your program will fail to compile at all on the submit server. (Suggestion—
create skeleton versions of all functions when starting to code, that just have an appropriate return statement.) Before
submitting, also be sure to test your makefile as explained in Section 4, and run valgrind on all of the tests (see the
information in Section B below). Using uninitialized data— which valgrind will detect— can cause C programs to work
differently on different machines or different times they’re compiled or run. If you don’t run valgrind on all the tests
before submitting you could find that you pass all the tests on Grace but fail some or all of them on the submit server.

A.2 Grading criteria

Your grade for this project will be based on:

© 2022 L. Herman; all rights reserved 10



public tests 35 points
secret tests 50 points
programming style | 15 points

Your code’s programming style will be graded, but in this project your makefile will not be graded for stylistic
issues. Of course if your makefile doesn’t work right your code might not compile on the submit server. And some
secret tests might test your makefile.

B Project—specific requirements, and notes

Be sure to reread the data structure requirements in Section 3 before starting to code.

To be completely clear, this is repeated here: you must use a dynamically—allocated linked data structure for
storing filesystems, and cannot use any fixed—size arrays in your data structure.

Do not write code using loops (or recursion) that has the same effect as any string library functions. If you need to
perform an operation on strings and there is a string library function already written that accomplishes that task,
you are expected to use it, otherwise you will lose credit. You are expected to use the string library functions
whenever there is one that can be used.

Do not cast the return value of the memory allocation functions or you will lose credit. Besides being completely
unnecessary, in some cases this can mask certain errors in code.

Remember that the project style says that global variables may not be used in projects unless you are specifically
told to use them. You will lose credit for using any global variables.

As the project grading policy handout on ELMS says you should use only the features of C that have been covered
so far, up through the time the project is assigned (subject to what the project style guide handout says is good
style).

Remember that our checking functions are not compatible with valgrind. To use valgrind on any public tests,
copy the test to another file, edit the copy to remove the calls to setup_memory_checking() and check_heap(),
compile the copy with your functions, and run the compiled program under valgrind. (As was shown when
valgrind was explained in discussion section, you need to compile your program using the -g option to use
valgrind, so you may want to add it to CFLAGS in your makefile if your makefile is compiling your own tests.)

You cannot modify anything in the header file ournix.h or add anything to ournix.h, because your submission
will be compiled on the submit server using our version of this file. You cannot write any new header files of your
own either, besides the required ournix-datastructure.h.

Your code may not comprise any source (.c) files other than ournix. c, so all your code must be in that file.

If your code compiles on Grace but not on the submit server either your account setup is wrong, or you modified
ournix.h, or your Makefile is wrong, and you did not test it as described in Section 4.

If your code passes tests on Grace but not on the submit server, remember that uninitialized variables can cause C
programs to work differently on different machines or different times they’re compiled. In this case run valgrind
to look for any use of variables before they are given a value.

Be sure to make frequent backups of your project files in a different directory in your course disk space.

For this project you will lose one point from your final project score for every submission that you make in excess
of four submissions, for any reason.

Recall that all your projects must work on at least half of the public tests (by the end of the semester) in order
for you to be eligible to pass the course. See the project grading policy for full details.

The TAs will not look at your code’s results on any of the public tests— you must have written your own tests.
And the TAs will not help you fix any program bugs unless you have first used gdb and valgrind. (If you need
help using these you can ask the TAs.)

© 2022 L. Herman; all rights reserved 11



C Academic integrity

Please carefully read the academic honesty section of the syllabus. Any evidence of impermissible cooperation on
projects, use of disallowed materials or resources, publicly providing others access to your project code online, or
unauthorized use of computer accounts, will be submitted to the Office of Student Conduct, which could result in an
XF for the course, or suspension or expulsion from the University. Be sure you understand what you are and what you
are not permitted to do in regards to academic integrity when it comes to projects. These policies apply to all students,
and the Student Honor Council does not consider lack of knowledge of the policies to be a defense for violating them.
More information is in the course syllabus — please review it now.

The academic integrity requirements also apply to any test data for projects, which must be your own original
work. Exchanging test data or working together to write test cases is also prohibited.

© 2022 L. Herman; all rights reserved 12



	Introduction and purpose
	Extra credit

	Filesystem components
	Data structure requirements, and memory management 
	Memory management

	Compiling using make
	Functions to be written
	The function for initializing a filesystem void mkfs(Ournix *const filesystem) 
	Functions for creating files and directories
	int touch(Ournix *const filesystem, const char name[])
	int mkdir(Ournix *const filesystem, const char name[])
	Notes about touch() and mkdir()

	The function for navigating around a filesystem int cd(Ournix *const filesystem, const char name[])
	Informational functions
	int ls(Ournix *const filesystem, const char name[])
	void pwd(Ournix *const filesystem)

	Functions to remove all or part of a simulated filesystem
	void rmfs(Ournix *const filesystem)
	int rm(Ournix *const filesystem, const char name[])

	Valid sequences of calls to the functions

	Memory checking and memory errors
	Test driver
	Development procedure review
	Obtaining the project files, compiling, checking your results, and submitting
	Grading criteria

	Project–specific requirements, and notes
	Academic integrity

